If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+x=120
We move all terms to the left:
10x^2+x-(120)=0
a = 10; b = 1; c = -120;
Δ = b2-4ac
Δ = 12-4·10·(-120)
Δ = 4801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{4801}}{2*10}=\frac{-1-\sqrt{4801}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{4801}}{2*10}=\frac{-1+\sqrt{4801}}{20} $
| 6/n-9=2/8 | | x2+5=3x+15 | | -5j—15=-10 | | √(2x-7)=9 | | -7n+4=-6n-16 | | 16t+6+18=4+20t | | 2310=660x | | 3(2y-3)=4(6y+7) | | -7n+4=-6n-12 | | -6(6+4v)+2=106 | | 2g-20=g | | -55=1/2h(10+1) | | 11y+13=23 | | 15q-14q-1=15 | | -14+s=18-s | | 6(x+8)=-20 | | 6n^2-9n-6=0 | | 6x-10=6x=12 | | 4c+9c+-14c=18 | | -.6x=-2.4 | | 2/3-(k+1/4)=1/12(k+1) | | 14x-13x+4=8 | | Z=4z+30 | | 4(x+1)=6+9 | | -18m+-18=18 | | Y=9y-52 | | -13u+20-1=-19-15u | | 0=-3/8x+3 | | 10t-13t+-14=-2 | | Y=3y-130 | | 52=50+n-40/4 | | 14v+5v-16v=18 |